ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Expert Systems with Applications 36 (2009) 3066-3076

Expert Systems
with Applications

www.elsevier.com/locate/eswa

Genetic algorithm-based strategy for identifying association
rules without specifying actual minimum support

Xiaowei Yan?, Chengqi Zhang?, Shichao Zhang ®“*

& Faculty of Information Technology, University of Technology, Sydney, P.O. Box 123, Broadway NSW 2007, Australia
® Institute of Logics, Zhongshan University, PR China
¢ School of Computer Science and Information Technology, Guangxi Normal University, PR China

Abstract

We design a genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. In this
approach, an elaborate encoding method is developed, and the relative confidence is used as the fitness function. With genetic algorithm,
a global search can be performed and system automation is implemented, because our model does not require the user-specified threshold
of minimum support. Furthermore, we expand this strategy to cover quantitative association rule discovery. For efficiency, we design a
generalized FP-tree to implement this algorithm. We experimentally evaluate our approach, and demonstrate that our algorithms signif-
icantly reduce the computation costs and generate interesting association rules only.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Data mining; Association rule mining; Genetic algorithm; Threshold setting

1. Introduction

Association rule mining (Agrawal, Imielinski, & Swami,
1993) plays a key role in boosting the research, develop-
ment and application of data mining techniques. This leads
to a great many significant technologies and methodologies
for identifying association rules. These techniques mainly
focus on algorithm scale-up and data reduction for the effi-
ciency issue.

However, these mining algorithms are mostly based on
the assumption that users can specify the minimum support
appropriate to their databases, and thus referred to as the
Apriori-like algorithms (Zhang & Zhang, 2002; Zhang, Lu,
& Zhang, 2004). Han, Wang, Lu, and Tzvetkov (2002)
have pointed out that setting the minimum support is quite
subtle, which can hinder the widespread applications of
these algorithms. Our own experiences of mining transac-

" Corresponding author.
E-mail addresses: xyan@it.uts.edu.au (X. Yan), chengqi@it.uts.edu.au
(C. Zhang), zhangsc@it.uts.edu.au (S. Zhang).

0957-4174/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2008.01.028

tion databases also tell us that the setting is by no means
an easy task.

Recognizing the above limitation, a great many tech-
niques have been developed to attack this issue. Han
et al. (2002) designed a strategy to mine top-k frequent
closed patterns for effectiveness and efficiency. Piatetsky-
Shapiro and Steingold proposed a method to identify only
the top 10% or 20% of the prospects with the highest score
for marketing (Piatetsky-Shapiro & Steingold, 2000). Rod-
dick and Rice (2001) presented the independent thresholds
and context dependent thresholds to measure time-varying
interestingness of events for temporal data. Hipp and
Guntzer (2002) explored a new mining approach that post-
pones constraints from mining to evaluation. Wang, He,
Cheung, and Chin (2001) designed a confidence-driven
mining strategy without minimum support to identify
new patterns. Cheung and Fu (2004) developed a technique
to identify frequent itemsets without the support threshold.
Zhang et al. (2004) advocated a fuzzy-logic-based method
to acquire user threshold of minimum support for mining
association rules. However, most of these approaches
attempt to avoid specifying the minimum support. Some

mailto:xyan@it.uts.edu.au
mailto:chengqi@it.uts.edu.au
mailto:zhangsc@it.uts.edu.au

X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076 3067

of them are actually confidence-driven methods. The last
approach solves the minimum support issue by coding
technique. All of these efforts provide a good insight into
the difficulty of specifying a minimum-support constraint.

In this paper we use genetic algorithm to identify associ-
ation rules without minimum support. Genetic algorithm is
efficient for global search work, especially when the search
space is too large to use a deterministic search method. It
imitates the mechanics of natural species evolution with
genetics principles, such as natural selection, crossover,
and mutation. In particular, our approach does not require
users to specify the minimum-support threshold. Instead of
generating an unknown number of interesting rules in tra-
ditional mining models, only the most interesting rules are
returned according to the interestingness measure defined
by the fitness function. Obviously, this method is data-
base-independent in contrast to these Apriori-based algo-
rithms. This approach leads to (1) effectiveness and
efficiency for global search; and (2) system automation,
because our model does not require the user-specified
threshold of minimum support.

The rest of this paper is organized as follows. We start
with brief recalls of both concepts concerning about asso-
ciation rules and current work on genetic algorithm-based
learning in Section 2. In Section 3, we present our genetic
algorithm-based model for identifying association rules,
including the encoding method, genetic operators, and
the ARMGA algorithm. In Section 4, we expand the ARM-
GA algorithm to identify generalized association rules. In
Section 5, we experimentally evaluate our approach.
Finally, we conclude our work in Section 6.

2. Preliminaries

This section recalls some concepts concerning associa-
tion rule mining, quantitative association rule, and genetic
algorithms.

2.1. Association rules

I={i,i...,in} is a set of literals, or items. X is an
itemset if it is a subset of I. Itemset X is a k-itemset if X
exactly has k items.

D={t,t,...,t,} is a set of transactions, called the
transaction database, where each transaction ¢; has a trans-
action identifier fid;, and a k;-itemset X;, that is,
t; = (tid, X;),1 <k;<myi=1,...,n. A transaction, ¢,
contains an itemset, X, if and only if, for any item i € X,
iis in t-itemset X;.

There is a natural lattice structure, namely the subset/
superset structure, over the set of all itemsets, 2!, Some cer-
tain sub-lattice of it can be taken as a taxonomy.

An itemset, X, in a transaction database, D, has a sup-
port, denoted as supp(X) or simply p(X), that is the ratio
of transactions in D containing X. Or

supp(X) = |X ()| /D]

where X (¢) = {¢ in D|t contains X}, |X(¢)| and |D| are the
numbers of transactions in X (¢) and D, respectively.

An itemset, X, in a transaction database, D, is called a
large (frequent) itemset if its support is equal to, or greater
than, a threshold of minimal support (minsupp), which is
given by user or expert.

An association rule is an implication X — Y, where item-
sets X and Y do not intersect.

Each association rule has two quality measurements,
support and confidence, defined as follows.

e the support of a rule X — Y is the support of X UY,
where X U Y is the union of X and Y;

e the confidence of a rule X — Y, written as conf (X — Y),
is the ratio |(X U Y)(¢)|/|X (¢)| or supp(X UY)/supp(X).

That is, support implies frequency of occurring patterns,
and confidence means the strength of implication. We now
introduce the support-confidence framework (Agrawal et al.,
1993).

Let I be the set of items in database D, X, Y C I be item-
sets, X NY =10, p(X)#0 and p(Y)#0. The minimal sup-
port, minsupp, and the minimal confidence, minconf, are
given by user or expert. Then rule X — Y is valid if

supp(X UY) = minsupp, and

conf(X - Y)= ‘Vﬁ’;&;;) > minconf,

Mining association rules can be taken into the following
two subproblems.

(1) Generating all itemsets for which supports are greater
than, or equal to, the user-specified minimum sup-
port, that is, generating all large itemsets; and

(2) Generating all the rules which satisfy the minimum
confidence constraint in a naive way as follows. For
each large itemset X, and any B C X, let 4 = X — B.
If the confidence of a rule A — B is greater than, or
equal to, the minimum confidence (or supp(X)/
supp(A) = minconf), then 4 — B can be extracted
as a valid rule.

To demonstrate the use of the support-confidence
framework, we illustrate the process of mining association
rules by the following example.

Example 1. Assume that we have a transaction database in
a supermarket, as shown in Table 1. There are six
transactions in the database with their transaction identi-
fiers (TIDs) ranging from 100 to 600. The universal itemset
I1={4,B,C,D,E}, where A4,B,C,D, and E can be any
items in the supermarket. For instance, A = “bread”,
B="“milk”, C = “sugar”, D = “coffee”, and E = “biscuit”.

There are totally 2°(= 32) itemsets. {4}, {B},{C},{D},
and {E} are all l-itemsets, {4C} is a 2-itemset, and so
on. supp(BC) = 4/6 = 0.67 because there are four transac-

3068 X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076

Table 1

An example transaction database

TID Items bought
100 ABCD

200 BCE

300 ABCE

400 BE

500 ACD

600 BCE

tions that contain both 4 and B. Let minsupp = 50%
and minconf = 80%. Then, 4,B,C,E,AC,BC,BE, and
BCE are all frequent itemsets. The confidence of associa-
tion rule 4 — C is conf (4 — C) = supp(AC)/supp(4) =
3/3 =1.0. Hence rule 4 — C is valid. Similarly we have
conf(C — A)=3/5=0.6. Hence, rule C —4 is not
valid.

2.2. Quantitative association rules

Let U ={4,,4,,...,4,} be the universal set of attri-
butes in a generalized relational database. For each quan-
titative attribute 4; € U, assume that a;, and b, are
respectively the minimum and maximum values among
all the values of attribute 4; in the database. Hence the
value domain of A, written as dom(4;), can be taken as
a close interval of [a;, b;]. Given a granularity g, > 0 for
attribute 4;, we can partition interval [a;, b;] into n; inter-
vals, [ax,ar + &), [ax+ g a + 28, .., lax + (mc = 1)g,
bi], where n, = | (by — ax)/g,] + 1. These sub-intervals are
all called the base intervals of 4;,. We can easily see that
by € [ax + (ny — V)gy, ar + mig,]. If 4, is a categorical attri-
bute, we define its granularity g,=0. We do not need to
partition the value domain of a categorical attribute. Sup-
pose that v is a value in the domain of categorical attribute
Ay. The corresponding base interval is [v,v + g,], i.e. the
value v itself.

For any two intervals, I} = [a,b] and I, = [¢,d], of 4,
there are three kinds of relationship between them as
follows.

(1) Adjacent, if and only if 5 =c or a =d.
(2) Disjoint, if and only if b < ¢ or a > d.
(3) Overlapped, if and only if c<a<dorec<b<d.

For any two base intervals of an attribute, only the first
two kinds of relationship are applicable because they can-
not be overlapped from the definition.

A gapped interval GI is a union of a certain finite num-
ber of base intervals, that is, GI = [a1,bi] U [az,b,] U - -
Ul@m, bn|, where [a;,b;] is a base interval, i=1, 2,...,m,
and m is a certain finite integer. An interval / is a maximum
interval of GI, if I C GI, and for any interval I' C GI, we
have I’ C I when I' N I##(). It is easy to prove the following
properties, which are useful for the design and implementa-
tion of our genetic algorithm.

Property 1. Gapped intervals are closed under operations of
union, intersection, and difference. In other words, the union,
intersection, and difference of any two gapped intervals are
all gapped intervals.

Property 2. A gapped intervals GI can be uniquely decom-
posed into the union of several maximum intervals of GI.
That is, GI =1, U1, U --- Uy, where each I; is a maximum
interval of GI, j=1,... k. For any interval I C GI, there
exists a I;,1 <i <k, such that I CI;.

An item then can be defined as a pair of the form
(4, GI), where A is an attribute in U, and gapped interval
GI C dom(A). There are two extreme situations. One is that
GI = dom(A) and item (4, GI) is called a universal item.
Another is the zero item, written as (), when GI = 0. A
set of items is referred to as an itemset. An itemset X is a
zero itemset, denoted as X =0, if VI € X,I = (. Appar-
ently, if there are two items in an itemset with the same
attribute, (4, GI,) and (4, GI,), we can easily merge them
into one item by (4,GI; U GI,), since GI, UGI, is also a
gapped interval from Property 1. Therefore, we assume
that any items in an itemset have different attributes, such
that we can reasonably define the length of an itemset. The
length of an itemset is the number of items in the itemset.
Itemset of length & is denoted as k-itemset. Then a tuple,
t=(v1,v2,...,0,), can be viewed as an itemset, i.c.
t = {(A4y, [v1,v1]), (42, [v2,02]), - -, (An, [Un, va])}, Where the
gapped interval of each item has only an interval with a sin-
gle value v; € dom(4;), i=1,2,...,n. A database DB is a
set of tuples over U. We shall alternatively use [v,v] and
v, if there is no confusion.

A tuple ¢ is said supporting an itemset X, if, for any item
(4, GI) € X, there exists a value (4,v) € ¢, such that v € GI.
The support of itemset X, written as supp(X), is the propor-
tion of tuples in DB, which support X. Clearly, if there
exists a zero item in X, then supp(X)=0.

2.3. Research into genetic algorithm-based learning

There have been many applications of genetic algo-
rithms in the field of data mining and knowledge discovery.
Most of them are addressed to the problem of
classification.

Usually, genetic algorithms for rules mining are parti-
tioned into two categories according to their encoding of
rules in the population of chromosomes (Freitas, 2003).
One encoding method is called Michigan approach, where
each rule is encoded into an individual. Another is referred
to as Pittsburgh approach, with which a set of rules are
encoded into a chromosome. For example, Fidelis, Lopes,
and Freitas (2000) gave a Michigan type of genetic algo-
rithm to discover comprehensible classification rules, hav-
ing an interesting chromosome encoding and introducing
a specific mutation operator. But the method is impractical
when the number of attribute is large. Weiss and Hirsh
(1998) also followed the Michigan method to predict rare

X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076 3069

events. Pei, Goodman, and Punch (1997), on the other
hand, used the Pittsburgh approach for discovery of classes
and feature patterns.

Other applications can be demonstrated by GA-Nuggets,
a system to infer the values of goal attributes given the
values of predicting attributes (Freitas, 1999), and SI401,
which finds the first- order-logic classification rules by
generalizing a seed example. Moreover, a recent work
which is also worthy to mention is the d4R, designed by
Au and Chan (2002) for mining association rules or more
exactly for discovering changing patterns in historical data.
In dAR, the whole set of rules are encoded in a single chro-
mosome and each rule is represented by some non-binary
symbolic values. It uses a complicated fitness function
and a Pittsburgh encoding.

Although it is known that genetic algorithm is good at
searching for nondeterministic solution, it is still rare to
see that genetic algorithm is used to mine association rules.
We are going to further investigate the possibility of apply-
ing genetic algorithm to the association rules mining in the
following sections.

3. Identifying association rules with genetic algorithm

Let/ = {i, i, ..., i,} be the universal set of items. Then
a transaction can be viewed as an itemset with variable
length, and a database D can be defined as a set of transac-
tions over 1. Associationrule X — Yisa k-ruleif YUY isa
k-itemset.

From Section 2.1, we know that the traditional task of
mining association rules is to find all rules X — Y, such
that the supports and confidences of the rules are larger
than, or equal to, the minimum support, minsupp, and
the minimum confidence, minconf, respectively.

In our genetic algorithm, called ARMGA, we require
that the confidence conf(X— Y) should be larger than,
or equal to, supp(Y), because we only deal with positive
association rules of the form X — Y. Hence, we define
the relative confidence as the interestingness measure as
follows:

oy Supp(X UY) — supp(X)supp(Y)
reonf (X = 1) == pp)1 = supp(7))

We now state our task of association rule mining as
follows:

Problem 1. Given a rule length k, we search for some high-
quality association k-rules, with their rconfs acceptably
maximized, by using a genetic algorithm.

3.1. Encoding

We first present our encoding in this subsection. And
then we design four basic genetic operators (see Section
3.2) and, an initializer and a fitness function based on the
relative confidence (see Section 3.3). We finally integrate
these modules into Algorithm ARMGA (see Section 3.4).

We now number and quote all items in I = {iy,i,...,i,}
by their indexes. In other words, we can assume that the
universal itemset 7 = {1,2, ..., n}. Given an association
k-rule X — Y, where X,Y C I, and X NY = (), we encode
it into an individual as

T Ta Tl Ta [l Ta]

where j is an indicator that separates the antecedent from
the consequent of the rule. That is, X = {4,, ..., 4;} and
Y ={Aj1, ..., Ax},0 < j < k. Therefore, a k-rule X — Y
is represented by k+1 positive integers.

3.2. Genetic operators

This subsection describe three genetic operators, select,
crossover, and mutation. The fitness function is given as
well.

1. Function select(c,sp) acts as a filter of chromosome
with considerations of their fitness and probability sp.
It returns TRUE if chromosome c is successfully selected
with probability sp, and otherwise FALSE if failed. In
this selection function, frand() is used to return a ran-
dom real number ranged from 0 to 1.

2. Function crossover(pop,cp) uses two-point strategy to
reproduce offspring chromosomes at a probability of
¢p from population pop, and returns a new population.
These two crossover points are randomly generated,
such that any segment of chromosome may be chosen,
illustrated in Fig. 1. Here, Function irand(k) is used to
return a random integer ranged from 0 to k. We gener-
ate i and j through this random function as the two
crossover points, and make sure i < j in the loop body.
After crossover, a strategy of nearest-neighbour-substi-
tution is used to ensure that any two genes in a chromo-
some are different.

3. Function mutate(c, mp) occasionally changes genes of
chromosome ¢ at a probability of mp, besides consider-
ing the fitness of ¢ as an additional weight. The nearest-

lAm lAu Ap ‘AB |AM ‘Aw Am‘

’Am ‘Am An ‘AB ’A% ‘A% A%‘
(a) before crossover

‘ AIO ‘ A]l AZZ ‘ AB A24 AZS A16 ‘

‘Am ‘Aﬂ Ap ‘AB Ay ‘Aw A%‘

(b) after crossover

Fig. 1. An example of two-point crossover.

3070 X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076

neighbour-substitution strategy is used again to guaran-
tee that the changed genes are really new.

4. From Problem 1, our goal is to search the most interest-
ing association rules. Hence, the fitness function is cru-
cial for determining the interestingness of chromosome,
and it does affect the convergence of the genectic algo-
rithm. In Algorithm 4ARMGA, we define our fitness func-
tion as

Ay .. Ay) — supp(A; ... A;)supp(Ajy, ... A
Sfitness(c) _ supp(ds ... Ay) — supp(d, ... A))supp(djar ... Ar)
supp(Ay ... 4;) (1 — supp(4;1 ... Ap))

where ¢ = (j,4y,...,4;,441,...,4;) is a given chromo-
some. The fitness of ¢ is, in fact, the relative confidence
of the corresponding association rule {4,...,4;} —
{Aj+lv s aAk}'

3.3. Initialization

Given a seed chromosome s, we use the mutate(s, mp)
function to produce an initial population pop[0], where
we have mp = 1. This initialization is shown in the follow-
ing function.

population initialise(s)
begin
pop[0] < s;
while sizeof (pop|[0]) < popsize/2 do
begin
pop_temp — {);
for V ¢ € pop[0] do
begin
pop-temp — pop_temp U mutate(c, 1);
end
popl0] < pop[0] U pop_temp;
end
return pop[0];
end

The above function accepts a seed chromosome as its
parameter and returns a population as the initial set of
chromosomes. Function sizeof (pop|[0]) returns the number
of chromosomes in pop[0]. popsize is a constant given by
user, representing the maximum number of chromosomes
in a population.

3.4. ARMGA algorithm

Suppose that the current population is pop[i]. We first
apply the select operator to popli], and produce a new pop-
ulation pop[i + 1]. Then any pair of chromosomes in
popli + 1] are crossed over at a probability of ¢p to repro-
duce two offspring. Each new chromosome mutates at a
probability of mp. Algorithm ARMGA generates a popula-
tion, at last, with high-quality chromosomes.

population ARMGA(s, sp, cp, mp)
begin
i« 0;
popli] < initialize(s);
while not terminate(popli]) do
begin
popli + 1] — 0;
pop_temp — 0;
for V ¢ € popli] do
if select(c,sp) then
popli + 1] — popli + 1] Uc;
pop-temp — crossover(popli + 1], cp);
for V ¢ € pop_temp do
popli + 1] — (popli + 1] — ¢) Umutate(c, mp);
i—i+1;
end
return popli];
end

Algorithm ARMGA stops, that is, the terminate() func-
tion returns a non-zero value, if and only if one of the fol-
lowing cases happens:

(1) The difference between the best and the worst chro-
mosomes is less than a given value, o, which is small
enough.

(2) The number of iterations, 7, is larger than a given
maximum number maxloop.

4. Expanding ARMGA for generalized association rules

Algorithm ARMGA is designed for Boolean association
rule mining. This section will expand it to deal with gener-
alized association rules.

4.1. Problem statement

As explained in Section 2.2, quantitative data ubiqui-
tously exist in generalized relational databases. We really
need to face the problem of quantitative association rule
mining. In 1995, Srikant and Agrawal proposed a general-
ized model to handle both categorical and quantitative
association rules (Srikant & Agrawal, 1995; Srikant &
Agrawal, 1996). In their generalized model, the concept
of itemset for Boolean attributes is expanded for both
quantitative and categorical attributes, and a corre-
sponding algorithm was given to mine generalized associ-
ation rules. However, there are still some limitations, such
as

(1) Partition of quantitative attribute, which is used in
the model, is not easy for every attribute and every
user.

(2) Users, and even experts, usually feel difficult to give
those thresholds like the minimum support, the inter-
est level, and the minimum confidence.

X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076 3071

(3) The search space might be very large when we cope
with quantitative attributes.

(4) The rules returned by the algorithm might be too
many to deal with.

(5) The model does not deal with those rules like

{(4ge :5...100160...65),
(Time : 17...180120...21)} — {(WatchTV : Yes)};

" (6) The proposed partitioning method may not be prac-
tical on some situations, for instance, when the data
is highly skewed, and

(7) The logic in (Srikant & Agrawal, 1996) should be
strengthened, since some concepts, such as the partial
completeness level and the ancestor of an itemset, are
used without correct definitions, and some results are
implicatively used without proving, such as,
AUB = AUB, where 4, B, and A UB are generaliza-
tions of 4, B, and 4 U B respectively.

Obviously, the problem of quantitative association rule
mining has a much bigger search space than the problem
of Boolean mining has. For the Boolean mining problem,
each attribute only has one of the two values, TRUE and
FALSE. On the other hand, each quantitative attribute
might have an enormous amount of values appeared in
the database. If we partition the value domain of a quanti-
tative attribute into intervals, there should be still a lot of
intervals we need to consider. Furthermore, we need to
consider combinations of these intervals. Therefore, we
might obtain much more rules than a decision-maker can
process. Although we can decrease the amount of gener-
ated association rules by appropriately specifying the
thresholds, such as the minimum support and interest level,
the number of rules output can be unpredictable.

In summary, our evolutionary method for quantitative
association rule mining is mainly motivated by (1) partition
of quantitative attribute is not easy for every attribute and
every user, (2) users, and even experts, usually feel difficult
to specify the minimum-support, (3) the search space might
be very large when we face quantitative attributes, and (4)
the rules returned might be too many to deal with.

The mining task in this section is now re-stated as
follows:

Problem 2. Given a relational database DB and a rule
length k, we search for some high-quality generalized
association k-rules in DB, which are both quantitative and
categorical, with their relative confidences acceptably
maximized, by using a genetic algorithm.

4.2. Encoding

Similar to the encoding method introduced in Section 3,
we also encode each association rule in a single chromo-
some. Because any item in an itemset X has different attri-
butes, we can index all items in X by their attributes.

Furthermore, suppose that the universal attribute set is
U={4,,4,,...,4,}. Here we index all attributes by inte-
gers 1,2,... n. Surely we can also index all items in X by
some integers ranged from 1 to n. Thus, assume that the
universal itemset U = {1,2, ..., n}. Given an association
k-rule X =Y, where X =A{n,....,1;}, and
Y={l1,...,1;} are two itemsets, and X NY =0, we
encode this rule into an individual as

[L ... | L Ll | I]

where, I; = (47, GI"), 4% € U, GI is a gapped interval,
GIY) Cdom(A"), i=1,2,... k. Therefore, a k-rule X —
Y is represented by k+1 positive integers and k gapped
intervals.

With this encoding approach, a rule is not uniquely rep-
resented in a chromosome, because there may be many per-
mutations of items in either the antecedent part or the
consequent part of a chromosome. For example, the fol-
lowing chromosomes,

| 2 [(1,Gh)]|(2,GL)] (3,GL) |

and

| 2 |(2,GL)|(1,GL)]| (3,GI3) |

stand for the same rule of {(1, GI,), (2,Gl,)} — {(3,GI3)}.

Therefore, in order to encode a rule into a single chro-
mosome, we further require that both antecedent attributes
and consequent attributes are in an ascending order. Thus
these k integers are sorted two-segmentally.

We now show that any GI'” C dom(A4"") can also be rep-
resented by a set of integers.

If 47 is a categorical attribute, we suppose that there are
n; categories of 4”. All base intervals of 4” then can be
represented by [1, 1], [2, 2],..., and [n;,n], or 1, 2,...,
and n;. Note that GI) only consists of the base intervals
of A”. Consequently, categorical GI'” can be represented
by a set of integers ranged from 1 to ;.

If 47 is a quantitative attribute, as mentioned previ-
ously, it should have n; base intervals, i.e. [a;,a; + g/],
[a; + g, ai +2g),..., and [a;+ (m; —1)g;,b;], where
[a;, b)=dom(A"), n; = | (b; — a;)/g;| + 1. Hence, the same
proposition holds for quantitative attribute.

Suppose A = A,. Then, gene I; = (4,,Gl,) is repre-
sented by an integer x ranged from 1 to 7, and a set of inte-
gers, written as GI, C{1,2, ... ,n.}, i=1,2, ..., k.

We also use /,.attr to denote the attribute 4, of /;, and
1;.GI to denote the gapped interval GI, of [;. Similarly,
for a chromosome chr, chr.attr stands for the set of all attri-
butes /;.attr, i=1, 2,..., k.

3072 X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076

4.3. Algorithm design

Given a population of chromosomes, pop, and a selec-
tion probability, sp, function select2(pop,sp) filters those
“bad” chromosomes according to their fitness values and
the selection probabilities. It accepts a population of chro-
mosomes and returns the new selected population, as
shown below.

population select2(pop, sp)
begin

pop_ret «— 0;

for YV chr € pop do

if (frand() x fitness(chr) < sp) then
pop-ret — pop_ret U {chr};

return pop_ret;

end

The function, crossover2(pop,cp), also reproduces off-
spring chromosomes at a crossover probability of ¢p from
population pop, as illustrated in Fig. 1. It is all the same as
the crossover(pop,cp) function in Section 3.2, except the
definition of items.

Given a population of chromosomes pop and mutation
probability mp, function mutate2(pop, mp) occasionally
changes chromosomes in pop according to the probabil-
ity mp, and the fitness of chromosome as an additional
weight.

population mutate2(pop, mp)

begin
pop_ret «— 0;
for ¥ chr = (I, ... 1) € pop do
begin
if (frand() « fitness(chr) < mp) then
begin
attr_set < chr.attr;
chrdy «— irand(k —2) + 1;
i—irand(k—1)+1;
attr_set «— attr_set — {1,};
ngr < number of intervals in /;.GI;
x «—irand(n — 1)+ 1;
while x € attr_set
x —irand(n—1)+ 1,
GI, — 0;
forvme{l,...,n} do
begin
if (frand() < ng;/n;) then
GI, — GI, U {m};
end
chrd; — (x,GI,);
end
pop_ret — pop_ret U {chr};
end
return pop_ret,;
end

Because 0 < chr.ly < k and 0 < irand(m) < m from the
definitions, we use irand() with parameter (k — 2) to gener-
ate a random integer and assign it to chr.J, to determine
the antecedent part and consequent part of a chromosome.
Then the ith gene is chosen to change its attribute and gap-
ped interval. The attribute is changed to x. The while loop
guarantees that x is not an existing attribute of the chromo-
some chr. Note that the changed gapped interval should be
a sub-domain of the new attribute. Let n, be the number of
base intervals of attribute Ax. Some of the base intervals
are chosen to compose the gapped intervals GI,. Probabi-
listically, the proportion of chosen intervals is the same
as that of /,.GI.

Given a seed chromosome s, we can use the following
function to initialize the population popl0].

population initialise2(s)
begin
pop[0] — {s};
while sizeof (pop[0]) < popsize/2 do
pop[0] — pop[0] U mutate(pop[0], 1);
return pop[0];
end

Integration of the above modules is straightforward. We
still use the relative confidence of an association rule as the
fitness function.

population EARMGA(s, sp, cp, mp)
begin
i+ 0;
popli] < initialize2(s);
while not terminate(popli]) do
begin
pop_temp «— 0;
popli + 1] « select2(popli], sp);
pop_temp «— crossover2(popli + 1], cp);
popli + 1] — popli + 1)U
mutate2(pop_temp, mp);
i—i+1;
end
return poplil;
end

The time complexities of select2, crossover2, and mutate2
are O(n), O(n?), and O(n) respectively, where #z is the num-
ber of chromosomes in the population.

4.4. Generalized FP-tree

In this subsection, we present a generalized FP-tree
based on (Han, Pei, & Yin, 2000), designed to implement
the EARMGA algorithm.

As shown in (Han et al., 2000), the construction of FP-
tree starts with finding the set of all frequent 1-itemsets
from a given transaction database. When the database is

X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076 3073

Header Table Tree
item |pointer
B 0————————:_—;] BC:3}----- » BE: 1}---» CE:1}---» CA:1]
C o Pl Pl
E | o . -
A o’

Fig. 2. The 2-FP-trees based on Table 1.

very dense, almost all items may be frequent and it is
unnecessary to find the set of frequent 1-itemsets. On the
other hand, when the database is large and sparse, FP-tree
might be inefficient. Sometimes, we only concern those
itemsets with a specific length k. In this section, we expand
the FP-tree to a general k-FP-tree, where k is a certain
non-negative integer. The construction of a k-FP-tree is
demonstrated below.

Example 2. Suppose that the transaction database is given
in Table 1, and the minimum support minsupp = 0.5. The
2-FP-tree is shown in Fig. 2.

After selecting an integer k for a given transaction data-
base, £ > 0, the collection of all frequent k-itemsets F and
their supports are first generated by scanning the database
once. Then F is considered as a conditional pattern base,
and the patterns in F are sorted in support-descending
order. In Example 1, we have, k=2 and F = {BC : 4,
BE :4,CE :3,CA : 3}. Let K be the union of all k-itemsets
in F. Thus, for each item e in itemset K, there exists at least
an itemset 7 in F, such that e is in /. From the anti-mono-
tonic Apriori property, each item e in K is frequent. We
create and sort the items in K by using the following
procedure. In Example 1, we obtain, K = {B,C,E, A}.

Procedure 1. FiMerge(F,K)

//Merge all items in F into K according to a
certain order
begin

let » — the number of itemsets in F;

let K — 0;

for m — 1 to n do

for (any item e in the mth itemset of F) do
if ¢ ¢ K then append e to the end of K

end.

We then create the root of a k-FP-tree, Tree, and label it
as “null”. For each itemset / € F, a child of the root is cre-
ated, its counter is initialized with 0, and the node is
labelled BY the itemset I. For each transaction 7 in the
database, find out the first itemset J in F, such that
JCT.LetS=T-—J,project S over K, sort all the resulted
items by the same order as that in K, and obtain R
at last. Suppose that R = /L, where [is the first item of R

and L is the list of remaining items in R. Insert R to the
sub-tree J of k-FP-tree Tree, by calling a procedure
FPInsert(IL,J). We also adjust the related counters by
increment and the relevant item lists by a procedure
append (), if necessary.

In Example 1, the first transaction is 7 = {4BCD}. We
can easily see that J = {BC} is the first itemset in F, which
is contained in 7. Hence, S = {4D}. Project S over K and
obtain R = {4}, where K = {BCEA}. Other transactions
are similarly processed recursively. A 2-FP-tree is con-
structed finally as shown in Fig. 2.

A formal description of construction algorithm for a k-
FP-tree is given below.

Algorithm 1. k-FP-tree_Constructor

input: DB: a transaction database;
minsupp: the minimum support;
k: a non-negative integer;

output: Tree: a. corresponding k-FP-tree;

begin
(1) if £ > 0 then

begin
let F —the collection of all frequent
k -itemsets and their supports;
sort F in order of descending support;

end

else

let F — (;
(2) call FIMerge(F,K);
(3) create the root, Tree, of a k-FP-tree;
(4) forV itemset I € F do
begin
create a child of Tree, labelled as [
let /.count — 0;
end
(5) forV transaction T € DB do
begin
let J— the first itemset I €F such
that ICT;
if J#() then
begin
J.count++;
for Ve € J do
if H(e) = NULL then
append(H (e),J);
let S — T —J;
sort S in the same order as that of K;
let / — the first item in S
letl — S —{I};
call FPInsert(IL,J);
end
end.

3074 X. Yan et al. | Expert Systems with Applications 36 (2009) 30663076

Procedure 2. FPinsert(IL,J)

//Insert itemset IL into tree J
begin
if / is a child of J then
L count++;
else
begin
create node / as a child of J;
let [.count — 1;
append(H (1), 1);
end
call FPInsert(L,1);
end

In the above algorithm, H(e) is the linked item list of e,
which starts from the header table, and Procedure
append(H(A4), B) adds node B to the end of the linked item
list H(4).

From Algorithm 1, we can see that a k-FP-tree contains
and only contains the information of those frequent item-
sets with their length equal to, or larger than, k. When
k=0, we do not need to scan the database for F. Instead,
we directly have K = F = (). When k = 1, k-FP-tree is a
normal FP-tree. Clearly, the information contained in a
k-FP-tree is complete in the sense that all frequent itemsets
can be obtained from the k-FP-tree, if and only if £ < 2.

5. Computations

We have conducted a set of experiments for evaluating
the designed algorithms. For space, this section only
reports on three groups of them.

5.1. Experiments on ARMGA

We use the Mushroom dataset from UCI at http://
www.ics.uci.edu/~mlearn again to show the effectiveness
of Algorithm ARMGA. Table 2 gives the parameters when
we run our computations.

We run the program when maxloop is given from 10 to
100 stepped with 10, from 100 to 1000 stepped with 100,
and from 1000 to 9000 stepped with 1000, respectively.

Table 2

Parameters for running Algorithm ARMGA

Parameter Value Description

sp 0.95 Selection probability

cp 0.85 Crossover probability

mp 0.01 Mutation probability

k 3 Rule length

n 118 Number of all items
popsize 100 Maximum size of population
o 0.01 Difference boundary
maxloop 10-9000 Maximum iteration number
K (1,34,86,85) Seed chromosome

For example, some results when maxloop is 10 are listed
as follows:

3485 < —86(90%)
34 < —9886(100%)
34 < —7886(100%)
34 < —4186(100%)
34 < —4286(100%)
34 < —2785(100%)
34 < —2685(100%)
34 < —9685(100%)
34 < —10185(100%)
3486 < —11(100%)

Results under other maxloop values are similar. We also
run a traditional Apriori-like algorithm when rule length
is fixed to 3, the minimum support is set to 0%, and the
minimum positive confidence is specified as 90%. The
number of returned rules is 445,978. The chromosomes,
returned by Algorithm ARMGA with their relative confi-
dence equal to or larger than 90%, are all among those
mentioned above by the Apriori-like algorithm. Conse-
quently, we can see that what Algorithm ARMGA returns
are some desired association rules with acceptable
quality.

Moreover, we find that much different populations can
be obtained each time we run A RMGA, even when the gen-
eration number grows up to 9000. The reason might be that
there are too many rules with high quality according to the
fitness function we defined. Therefore we need to define a
more strict fitness function. One of possible approaches is
to additionally consider the support measure. In fact, the
support is statistically significant, and requisite in the light
of traditional association rule mining area. For example,
when the minimum support increases to 60%, the Apriori-
like algorithm generates only 8 rules from the Mushroom
dataset.

5.2. Experiments on EARMGA

The Tumour dataset from http://lib.stat.cmu.edu/data-
sets/tumor is used to show the effectiveness of Algorithm
EARMGA. The dataset contains five attributes, that is,
U = {group, futime, number, size, recurrences}.

Attribute 1, group, is categorical. Its domain dom(group)
only has two values: 1 for the category of using pla-
cebo treatment, and 2 for another category of thiotepa
treatment.

Attribute 2, futime, is quantitative, raged from 0 to 64.
We suppose that its granularity g, is 10. Then universal
interval [0,64] is divided into 7 base intervals as [0, 10],
[10,20], [20,30], [30,40], [40,50], [50,60], and [60,70]. A
boundary of these intervals may belong to two base inter-

http://www.ics.uci.edu/~mlearn
http://www.ics.uci.edu/~mlearn
http://lib.stat.cmu.edu/datasets/tumor
http://lib.stat.cmu.edu/datasets/tumor

X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076 3075
Table 3
Number of nodes at the second level for Connect-4
Support 0.1 1 10 20 30 40 50 60 70 80 90
0-FP-tree 129 129 129 129 129 129 129 129 129 129 129
1-FP-tree 125 109 73 59 46 43 38 36 31 28 21
2-FP-tree 5793 4294 1986 1358 894 744 633 539 420 319 108
vals. We assume that a value of boundary is in an interval 2
. . . p< orm—1<—, (1)
only if the value is the left boundary of the interval. m—1 P
Attribute 3, number, can be viewed as being categorical, Th
valued as integers from 1 to 8. Granularity g,,,.,.r = 0. en,
Attribute 4, size, can is taken as quantitative, ranged m—1 m s
from 1 to 7. Granularity g,.,=1. Again, a boundary value 5 pomp<mp that is, 5) PP

belongs to a base interval only if the value is the left bound-
ary of the interval.

Attribute 5, recurrences, is categorical, with values of 0,
1, 2, 3, and 4.

We start with a seed chromosome s = {2, (1, [1,1]), (4,
[4,7]),(5,[1,4])}, and generate an initial population by
the initializer initialise2(s). Some results when maxloop is
10 are listed below.

2, (1, [1,10), (4, 2,2)), (3, [1, 1]) }(100.0%)

{2,(2,[0,10]), (3, [1,1]), (5, [0, 0]) }(100.0%)
{2,(2,[10,20],)(5,[0,0]), (4,[0, 1])}(100.0%)
{2,(2,[40,50)), (5, [4,4]), (4,[0, 1])}(100.0%)

Conclusions similar to those in Section 5.1 can be drawn.
5.3. Experiments on k-FP-tree_Constructor

The Connect-4 dataset from the Irvine Machine Learning
Database Repository is used to demonstrate the performance
of our data structure (Blake & Merz, 1998). Connect-4 con-
tains 67,557 records of legal positions and corresponding
optimal results in the game of connect-4, with 129 items
totally in the dataset and 43 items on average in transaction.
Table 3 shows the number of direct children of the root for dif-
ferent minimum supports generated by Algorithm 1.

Based on Table 3, we can see that we would rather use 0-
FP-tree than use 1-FP-tree if the minimum support is set to
1 or 0.1. For dataset Connect-4 and most other support
thresholds, 1-FP-tree is better than 0-FP-tree. Because
Connect-4 is a rather dense dataset, k-FP-tree is not con-
sidered here for £ > 1.

Suppose that the total number of items is m and the
total number of transactions is n for a given transaction
database DB. Let the expected probability that an item
appears in a transaction of DB be p. Then, the expected
number of items that appear in a transaction is m - p. The
expected number of item-pairs that appear in a transaction

If

m
2

m(m — 1)
2

.pz’

This implies that when the database DB is so sparse that

inequality 1 holds, the number of frequent 1-itemsets is

probabilistically more than the number of frequent 2-item-

sets. Consequently, 2-FP-tree is smaller than 1-FP-tree.
Generally, when

k

S 2
N @)

we have,

()4<() 7

Therefore, (k — 1)-FP-tree is larger than k-FP-tree if condi-
tion (2) holds.

m
k

m
-1

6. Summary

We have designed a genetic algorithm-based strategy
and its corresponding ARMGA/EARMGA algorithm.
Our approach has delivered two benefits: (1) high-perfor-
mance association rule mining; (2) system automation.
Computation results show that our model can be taken
as an alternative for effective association rule mining.

The most important difference between our algorithm
and existing mining strategies is that our approach does
not require the minimum-support threshold. The experi-
mental results of our approach encourage us to improve
and apply this strategy in real-world applications.

Acknowledgements

This work was supported in part by an Australian large
ARC grant (DP0667060), a China NSF major research
Program (60496327), China NSF grants (90718020,
60625204), a China 973 Program (2008CB317108), an
Overseas Outstanding Talent Research Program of Chi-
nese Academy of Sciences (06S3011S01), an Overseas-
Returning High-level Talent Research Program of China
Hunan-Resource Ministry, the MOE Project of Key Re-
search Institute of Humanities and Social Sciences at Uni-
versities (07JJD720044), and Guangxi NSF grants.

3076 X. Yan et al. | Expert Systems with Applications 36 (2009) 3066-3076

References

Agrawal, R., Imielinski, T., & Swami, T. (1993). Mining association rules
between sets of items in large databases. In Proceedings of ACM
SIGMOD international conference on management of data (SIG-
MOD’93) (pp. 207-216).

Au, W., & Chan, K. (2002). An evolutionary approach for discovering
changing patterns in historical data. In Proceedings of 2002 SPIE (Vol.
4730, pp. 398-409).

Blake, C., & Merz, C. (1998). UCI repository of machine learning
databases (<http://www.ics.uci.edu/~mlearn/MLRepository.html>).
Irvine, CA: University of California, Department of Information
and Computer Science.

Cheung, Y., & Fu, A. (2004). Mining frequent itemsets without support
threshold: With and without item constraints. [EEE Transactions on
Knowledge and Data Engineering (available online).

Fidelis, M., Lopes, H., & Freitas, A. (2000). Discovering comprehensible
classification rules with a genetic algorithm. In Proceedings of the 2000
congress on evolutionary computation (pp. 805-810).

Freitas, A. (1999). A genetic algorithm for generalized rule induction. In P.
K. Chawdhry, T. Furuhashi, & R. Roy (Eds.), Advances in soft
computing — Engineering design and manufacturing (pp. 340-353).
Berlin: Springer-Verlag.

Freitas, A. (2003). A survey of evolutionary algorithms for data mining
and knowledge discovery. In A. Ghosh & S. Tsutsui (Eds.), Advances
in evolutionary computing (pp. 819-846). Berlin/Heidelberg/New York:
Springer-Verlag.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without
candidate generation. In Proceedings of the ACM SIGMOD interna-
tional conference on management of data (SIGMOD) (pp. 1-12).

Han, J., Wang, J., Lu, Y., & Tzvetkov, P. (2002). Mining top-k frequent
closed patterns without minimum support. In Proceedings of the 2002

IEEE international conference on data mining (ICDM 2002) (pp. 211—
218).

Hipp, J., & Guntzer, U. (2002). Is pushing constraints deeply into the
mining algorithms really what we want? SIGKDD Explorations, 41,
50-55.

Pei, M., Goodman, E., & Punch, W. (1997). Pattern discovery from data
using genetic algorithm. In Proceedings of the first Pacific-Asia
conference knowledge discovery and data mining (pp. 264-276).

Piatetsky-Shapiro, G., & Steingold, S. (2000). Measuring lift quality in
database marketing. SIGKDD Explorations, 22, 76-80.

Roddick, J. F., & Rice, S. (2001). What’s interesting about cricket? — On
thresholds and anticipation in discovered rules. SIGKDD Explorations,
31, 1-5.

Srikant, R., & Agrawal, R. (1995). Mining generalized association rules.
In Proceedings of the 2lst international conference on very large
databases (VLDB'95) (pp. 407-419).

Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in
large relational tables. In Proceedings of the ACM SIGMOD interna-
tional conference on management of data (SIGMOD’96) (pp. 1-12).

Wang, K., He, Y., Cheung, D., & Chin, F. (2001). Mining confident rules
without support requirement. In Proceedings of the 10th ACM
international conference on information and knowledge management
(CIKM 2001), (pp 89-96). Atlanta.

Weiss, G., & Hirsh, H. (1998). Learning to predict rare events in event
sequences. In Proceedings of the 4th international conference on
knowledge discovery and data mining (pp. 359-363). AAAI Press.

Zhang, S., Lu, J., & Zhang, C. (2004). A fuzzy-logic-based method to
acquire user threshold of minimum-support for mining association
rules. Information Sciences (available online).

Zhang, C., & Zhang, S. (2002). Association rules mining: Models and
algorithms. Lecture notes in computer science (Vol. 2307, p. 243).
Springer-Verlag.

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support
	Introduction
	Preliminaries
	Association rules
	Quantitative association rules
	Research into genetic algorithm-based learning

	Identifying association rules with genetic algorithm
	Encoding
	Genetic operators
	Initialization
	ARMGA algorithm

	Expanding ARMGA for generalized association rules
	Problem statement
	Encoding
	Algorithm design
	Generalized FP-tree

	Computations
	Experiments on ARMGA
	Experiments on EARMGA
	Experiments on k-FP-tree_Constructor

	Summary
	Acknowledgements
	References

